00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00035
00036
00037
00038
00039
00040
00041 #ifndef OPENMESH_SUBDIVIDER_UNIFORM_LOOPT_HH
00042 #define OPENMESH_SUBDIVIDER_UNIFORM_LOOPT_HH
00043
00044
00045
00046
00047 #include <OpenMesh/Core/System/config.hh>
00048 #include <OpenMesh/Tools/Subdivider/Uniform/SubdividerT.hh>
00049 #include <OpenMesh/Core/Utils/vector_cast.hh>
00050
00051 #include <vector>
00052 #if defined(OM_CC_MIPS)
00053 # include <math.h>
00054 #else
00055 # include <cmath>
00056 #endif
00057
00058
00059
00060
00061 namespace OpenMesh {
00062 namespace Subdivider {
00063 namespace Uniform {
00064
00065
00066
00067
00076 template <typename MeshType, typename RealType = float>
00077 class LoopT : public SubdividerT<MeshType, RealType>
00078 {
00079 public:
00080
00081 typedef RealType real_t;
00082 typedef MeshType mesh_t;
00083 typedef SubdividerT< mesh_t, real_t > parent_t;
00084
00085 typedef std::pair< real_t, real_t > weight_t;
00086 typedef std::vector< std::pair<real_t,real_t> > weights_t;
00087
00088 public:
00089
00090
00091 LoopT(void) : parent_t(), _1over8( 1.0/8.0 ), _3over8( 3.0/8.0 )
00092 { init_weights(); }
00093
00094
00095 LoopT( mesh_t& _m ) : parent_t(_m), _1over8( 1.0/8.0 ), _3over8( 3.0/8.0 )
00096 { init_weights(); }
00097
00098
00099 ~LoopT() {}
00100
00101
00102 public:
00103
00104
00105 const char *name() const { return "Uniform Loop"; }
00106
00107
00109 void init_weights(size_t _max_valence=50)
00110 {
00111 weights_.resize(_max_valence);
00112 std::generate(weights_.begin(), weights_.end(), compute_weight());
00113 }
00114
00115
00116 protected:
00117
00118
00119 bool prepare( mesh_t& _m )
00120 {
00121 _m.add_property( vp_pos_ );
00122 _m.add_property( ep_pos_ );
00123 return true;
00124 }
00125
00126
00127 bool cleanup( mesh_t& _m )
00128 {
00129 _m.remove_property( vp_pos_ );
00130 _m.remove_property( ep_pos_ );
00131 return true;
00132 }
00133
00134
00135 bool subdivide( mesh_t& _m, size_t _n)
00136 {
00137 typename mesh_t::FaceIter fit, f_end;
00138 typename mesh_t::EdgeIter eit, e_end;
00139 typename mesh_t::VertexIter vit;
00140
00141
00142 for (size_t i=0; i < _n; ++i)
00143 {
00144
00145 for ( vit = _m.vertices_begin();
00146 vit != _m.vertices_end(); ++vit)
00147 smooth( _m, vit.handle() );
00148
00149
00150
00151 for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
00152 compute_midpoint( _m, eit.handle() );
00153
00154
00155
00156
00157
00158
00159 e_end = _m.edges_end();
00160 for (eit=_m.edges_begin(); eit != e_end; ++eit)
00161 split_edge(_m, eit.handle() );
00162
00163
00164
00165
00166
00167 f_end = _m.faces_end();
00168 for (fit = _m.faces_begin(); fit != f_end; ++fit)
00169 split_face(_m, fit.handle() );
00170
00171
00172
00173 for ( vit = _m.vertices_begin();
00174 vit != _m.vertices_end(); ++vit)
00175 _m.set_point(vit, _m.property( vp_pos_, vit ) );
00176
00177 #if defined(_DEBUG) || defined(DEBUG)
00178
00179 assert( OpenMesh::Utils::MeshCheckerT<mesh_t>(_m).check() );
00180 #endif
00181 }
00182
00183 return true;
00184 }
00185
00186 private:
00187
00190 struct compute_weight
00191 {
00192 compute_weight() : valence(-1) { }
00193 weight_t operator() (void)
00194 {
00195 #if !defined(OM_CC_MIPS)
00196 using std::cos;
00197 #endif
00198
00199
00200
00201
00202 if (++valence)
00203 {
00204 double inv_v = 1.0/double(valence);
00205 double t = (3.0 + 2.0 * cos( 2.0 * M_PI * inv_v) );
00206 double alpha = (40.0 - t * t)/64.0;
00207
00208 return weight_t( 1.0-alpha, inv_v*alpha);
00209 }
00210 return weight_t(0.0, 0.0);
00211 }
00212 int valence;
00213 };
00214
00215 private:
00216
00217 void split_face(mesh_t& _m, const typename mesh_t::FaceHandle& _fh)
00218 {
00219 typename mesh_t::HalfedgeHandle
00220 heh1(_m.halfedge_handle(_fh)),
00221 heh2(_m.next_halfedge_handle(_m.next_halfedge_handle(heh1))),
00222 heh3(_m.next_halfedge_handle(_m.next_halfedge_handle(heh2)));
00223
00224
00225 corner_cutting( _m, heh1 );
00226 corner_cutting( _m, heh2 );
00227 corner_cutting( _m, heh3 );
00228 }
00229
00230
00231 void corner_cutting(mesh_t& _m, const typename mesh_t::HalfedgeHandle& _he)
00232 {
00233
00234 typename mesh_t::HalfedgeHandle
00235 heh1(_he),
00236 heh5(heh1),
00237 heh6(_m.next_halfedge_handle(heh1));
00238
00239
00240 for (; _m.next_halfedge_handle(_m.next_halfedge_handle(heh5)) != heh1;
00241 heh5 = _m.next_halfedge_handle(heh5))
00242 {}
00243
00244 typename mesh_t::VertexHandle
00245 vh1 = _m.to_vertex_handle(heh1),
00246 vh2 = _m.to_vertex_handle(heh5);
00247
00248 typename mesh_t::HalfedgeHandle
00249 heh2(_m.next_halfedge_handle(heh5)),
00250 heh3(_m.new_edge( vh1, vh2)),
00251 heh4(_m.opposite_halfedge_handle(heh3));
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267 typename mesh_t::FaceHandle fh_old(_m.face_handle(heh6));
00268 typename mesh_t::FaceHandle fh_new(_m.new_face());
00269
00270
00271
00272 _m.set_next_halfedge_handle(heh4, heh6);
00273 _m.set_next_halfedge_handle(heh5, heh4);
00274
00275 _m.set_face_handle(heh4, fh_old);
00276 _m.set_face_handle(heh5, fh_old);
00277 _m.set_face_handle(heh6, fh_old);
00278 _m.set_halfedge_handle(fh_old, heh4);
00279
00280
00281 _m.set_next_halfedge_handle(heh1, heh3);
00282 _m.set_next_halfedge_handle(heh3, heh2);
00283
00284 _m.set_face_handle(heh1, fh_new);
00285 _m.set_face_handle(heh2, fh_new);
00286 _m.set_face_handle(heh3, fh_new);
00287
00288 _m.set_halfedge_handle(fh_new, heh1);
00289 }
00290
00291
00292 void split_edge(mesh_t& _m, const typename mesh_t::EdgeHandle& _eh)
00293 {
00294 typename mesh_t::HalfedgeHandle
00295 heh = _m.halfedge_handle(_eh, 0),
00296 opp_heh = _m.halfedge_handle(_eh, 1);
00297
00298 typename mesh_t::HalfedgeHandle new_heh, opp_new_heh, t_heh;
00299 typename mesh_t::VertexHandle vh;
00300 typename mesh_t::VertexHandle vh1(_m.to_vertex_handle(heh));
00301 typename mesh_t::Point zero(0,0,0);
00302
00303
00304 vh = _m.new_vertex( zero );
00305
00306
00307 _m.property( vp_pos_, vh ) = _m.property( ep_pos_, _eh );
00308
00309
00310
00311 if (_m.is_boundary(_eh))
00312 {
00313 for (t_heh = heh;
00314 _m.next_halfedge_handle(t_heh) != opp_heh;
00315 t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
00316 {}
00317 }
00318 else
00319 {
00320 for (t_heh = _m.next_halfedge_handle(opp_heh);
00321 _m.next_halfedge_handle(t_heh) != opp_heh;
00322 t_heh = _m.next_halfedge_handle(t_heh) )
00323 {}
00324 }
00325
00326 new_heh = _m.new_edge(vh, vh1);
00327 opp_new_heh = _m.opposite_halfedge_handle(new_heh);
00328 _m.set_vertex_handle( heh, vh );
00329
00330 _m.set_next_halfedge_handle(t_heh, opp_new_heh);
00331 _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh));
00332 _m.set_next_halfedge_handle(heh, new_heh);
00333 _m.set_next_halfedge_handle(opp_new_heh, opp_heh);
00334
00335 if (_m.face_handle(opp_heh).is_valid())
00336 {
00337 _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
00338 _m.set_halfedge_handle(_m.face_handle(opp_new_heh), opp_new_heh);
00339 }
00340
00341 _m.set_face_handle( new_heh, _m.face_handle(heh) );
00342 _m.set_halfedge_handle( vh, new_heh);
00343 _m.set_halfedge_handle( _m.face_handle(heh), heh );
00344 _m.set_halfedge_handle( vh1, opp_new_heh );
00345
00346
00347 _m.adjust_outgoing_halfedge( vh );
00348 _m.adjust_outgoing_halfedge( vh1 );
00349 }
00350
00351 private:
00352
00353 void compute_midpoint(mesh_t& _m, const typename mesh_t::EdgeHandle& _eh)
00354 {
00355 #define V( X ) vector_cast< typename mesh_t::Normal >( X )
00356 typename mesh_t::HalfedgeHandle heh, opp_heh;
00357
00358 heh = _m.halfedge_handle( _eh, 0);
00359 opp_heh = _m.halfedge_handle( _eh, 1);
00360
00361 typename mesh_t::Point
00362 pos(_m.point(_m.to_vertex_handle(heh)));
00363
00364 pos += V( _m.point(_m.to_vertex_handle(opp_heh)) );
00365
00366
00367 if (_m.is_boundary(_eh) )
00368 {
00369 pos *= 0.5;
00370 }
00371 else
00372 {
00373 pos *= real_t(3.0);
00374 pos += V(_m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh))));
00375 pos += V(_m.point(_m.to_vertex_handle(_m.next_halfedge_handle(opp_heh))));
00376 pos *= _1over8;
00377 }
00378 _m.property( ep_pos_, _eh ) = pos;
00379 #undef V
00380 }
00381
00382
00383 void smooth(mesh_t& _m, const typename mesh_t::VertexHandle& _vh)
00384 {
00385 typename mesh_t::Point pos(0.0,0.0,0.0);
00386
00387 if (_m.is_boundary(_vh))
00388 {
00389 typename mesh_t::HalfedgeHandle heh, prev_heh;
00390 heh = _m.halfedge_handle( _vh );
00391
00392 if ( heh.is_valid() )
00393 {
00394 assert( _m.is_boundary( _m.edge_handle( heh ) ) );
00395
00396 prev_heh = _m.prev_halfedge_handle( heh );
00397
00398 typename mesh_t::VertexHandle
00399 to_vh = _m.to_vertex_handle( heh ),
00400 from_vh = _m.from_vertex_handle( prev_heh );
00401
00402
00403 pos = _m.point( _vh );
00404 pos *= real_t(6.0);
00405 pos += vector_cast< typename mesh_t::Normal >( _m.point( to_vh ) );
00406 pos += vector_cast< typename mesh_t::Normal >( _m.point( from_vh ) );
00407 pos *= _1over8;
00408
00409 }
00410 else
00411 return;
00412 }
00413 else
00414 {
00415 typedef typename mesh_t::Normal Vec;
00416 typename mesh_t::VertexVertexIter vvit;
00417 size_t valence(0);
00418
00419
00420 for (vvit=_m.vv_iter(_vh); vvit; ++vvit) {
00421 ++valence;
00422 pos += vector_cast< Vec >( _m.point(vvit) );
00423 }
00424 pos *= weights_[valence].second;
00425 pos += weights_[valence].first
00426 * vector_cast<Vec>(_m.point(_vh));
00427 }
00428
00429 _m.property( vp_pos_, _vh ) = pos;
00430 }
00431
00432 private:
00433
00434 OpenMesh::VPropHandleT< typename mesh_t::Point > vp_pos_;
00435 OpenMesh::EPropHandleT< typename mesh_t::Point > ep_pos_;
00436
00437 weights_t weights_;
00438
00439 const real_t _1over8;
00440 const real_t _3over8;
00441
00442 };
00443
00444
00445
00446 }
00447 }
00448 }
00449
00450 #endif // OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITELOOPT_HH defined
00451